
Abstract    Intel Ethernet Flow Director is an advanced 
network interface card (NIC) technology. It provides the benefits 
of parallel receive processing in multiprocessing environments 
and can automatically steer incoming network data to the same 
core on which its application process resides. However, our 
analysis and experiments show that Flow Director cannot 
guarantee in-order packet delivery in multiprocessing 
environments. Packet reordering causes various negative 
impacts. In this paper, we use a simplified model to analyze why 
Flow Director can cause packet reordering. Our experiments 
verify our analysis. 
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I. Introduction 

Computing is now shifting towards multiprocessing. The 
fundamental goal of multiprocessing is improved performance 
through the introduction of additional hardware threads, 
CPUs, or cores (all of which will be referred to as “cores” for 
simplicity). The emergence of multiprocessing has brought 
both opportunities and challenges for TCP/IP performance 
optimization in such environments. Modern network stacks 
can exploit parallel cores to allow either message-based 
parallelism or connection-based parallelism as a means of 
enhancing performance. To date, major network stacks like 
Windows and Linux have been redesigned and parallelized to 
better utilize additional cores. While existing OSes exploit 
parallelism by allowing multiple threads to carry out network 
operations concurrently in the kernel, supporting this 
parallelism carries significant costs, particularly in the context 
of contention for shared resources, software synchronization, 
and poor cache efficiencies. However, investigations [1][2] 
indicate that CPU core affinity on network processing in 
multiprocessing environment can significantly reduce 
contention for shared resources, minimize software 
synchronization overheads, and enhance cache efficiency.  

Core affinity on network processing has the following 
goals: (1) Interrupt affinity: Network interrupts of the same 
type should be directed to a single core. Redistributing 
network interrupts in either a random or round-robin fashion 
to different cores has undesirable side effects. (2) Flow 
affinity: Packets belonging to a specific TCP flow should be 
processed by the same core. TCP has a large and frequently 
accessed state that must be shared and protected when packets 
from the same connection are processed. Ensuring that all 
packets in a TCP flow are processed by a single core reduces 
contention for shared resources, minimizes software 
synchronization, and enhances cache efficiency. (3) Network 
data affinity: Incoming network data should be steered to the 

same core on which its application process resides. This is 
becoming more important with the advent of Direct Cache 
Access (DCA). Network data affinity maximizes cache 
efficiency and reduces core-to-core synchronization. 

The emergence of parallel network stacks and the necessity 
of core affinity on network processing in multiprocessing 
environment require new NIC designs. An NIC should not 
only provide mechanisms to allow parallel receive processing 
to better utilize parallel network stacks, but also to facilitate 
core affinity on network processing in multiprocessing 
environments. Receive Side Scaling (RSS) [3] is a NIC 
technology that steps toward that direction. It supports 
multiple receive queues and integrates a hashing function in 
the NIC. The NIC computes a hash value for each incoming 
packet. Based on hash values, NIC assigns packets of the same 
data flow to a single queue and evenly distributes traffic flows 
across queues. With Message Signal Interrupt (MSI/MSI-X) 
support, each receive queue is assigned a dedicated interrupt 
and RSS steers interrupts on a per-queue basis. RSS provides 
the benefits of parallel receive processing in multiprocessing 
environments. Operating systems like Windows and Linux 
now support interrupt affinity. When an RSS receive queue (or 
interrupt) is tied to a specific core, packets from the same flow 
are steered to that core (Flow pinning). This ensures flow 
affinity on most OSes. However, RSS has a limitation: it 
cannot steer incoming network data to the same core where its 
application process resides. The reason is simple: the existing 
RSS-enabled NICs do not maintain the relationship “Traffic 
Flows → Network applications → Cores” in the NIC. Since 
network applications run on cores, we simply put is as “Traffic 
Flows → Cores (Applications).” This is symptomatic of a 
broader disconnect between existing software architecture and 
multicore hardware. With OSes like Windows and Linux, if an 
application is running on one core, while RSS has scheduled 
received traffic to be processed on a different core, poor cache 
efficiency and significant core-to-core synchronization 
overheads will result. The overall system efficiency may be 
severely degraded. To remedy the RSS limitation, the Intel 
Ethernet Flow Director technology [4] has been introduced. 
The basic idea is simple: Flow Director maintains the 
relationship “Traffic Flows → Cores (Applications)” in the 
NIC. OSes are correspondingly enhanced to support such 
capability. Flow Director not only provides the benefits of 
parallel receive processing in multiprocessing environments, it 
also can automatically steer packets of a specific data flow to 
the same core on which its application process resides, which 
facilitates core affinity on network processing. However, our 
analysis and experiments show that Flow Director cannot 
guarantee in-order packet delivery in multiprocessing 
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environments. TCP performance suffers in the event of severe 
packet reordering. It also makes network measurements 
inaccurate. In this paper, we use a simplified model to analyze 
why Flow Director can cause packet reordering. Our 
experiments verify our analysis.  

II. Why Does Flow Director Cause Packet Reordering? 
Intel Ethernet Flow Director supports multiple receive 

queues in the NIC, up to the number of cores in the system. 
With MSI/MSI-X and Flow-Pinning support, each receive 
queue has a dedicated interrupt and is tied to a specific core; 
each core in the system is assigned a specific receive queue. 
The NIC device driver allocates and maintains a ring buffer in 
system memory for each receive queue. For packet reception, 
a ring buffer must be initialized and pre-allocated with empty 
packet buffers. The ring buffer size is device and driver-
dependent. For transport-layer traffic, Flow Director maintains 
a “Traffic Flow → Core” table with a single entry per flow. 
Each entry tracks the receive queue (core) to which a flow 
should be assigned. Flow Director makes use of the 5-tuple 
{src_addr, dst_addr, protocol, src_port, dst_port} in the 
receive direction to identify a flow in the table, and a core ID 
to specify the core to which the flow should be assigned. 
Entries within the “Traffic Flow → Core” table are updated by 
outgoing packets. To support Flow Director, OS must be 
multiple TX queue capable [5]. For an outgoing transport-
layer packet, the OS records its processing core ID and passes 
it to the NIC to generate or update the corresponding entry 
within the table. The passed processing core ID advertises the 
core on which a network application resides. For example, a 
network application that resides on core i sends an outgoing 
packet with the header {(src_addr: x), (dst_addr: y), 
(protocol: z), (src_port: p), (dst_port: q)}. The OS records its 
processing core ID i and passes it to the NIC. The NIC 
generates or updates the corresponding flow entry in the table 
as {(src_addr: y), (dst_addr: x), (protocol: z), (src_port: q), 
(dst_port: p), (core id: i)}. A flow entry is deleted from the 
table after a configurable period of time has elapsed without 

traffic. 
Fig. 1 illustrates packet receive-processing for transport-

layer packets with Flow Director. (1) When incoming packets 
arrive, the hash function is applied to the header to produce a 
hash result. Based on the hash result, the NIC identifies the 
core and hence, the associated receive queue. (2) The NIC 
assigns the incoming packets to the corresponding receive 
queues. (3) The NIC deposits via direct memory access 
(DMA) the received packets into the corresponding ring 
buffers in system memory. (4) The NIC sends interrupts to the 
cores associated with the non-empty queues. Subsequently, the 
cores respond to the network interrupts and process the 
received packets up through the network stack from the 
corresponding ring buffers one by one. As for non-Flow-
Director-steering traffic, please refer to [4] for more details. 

Flow Director provides the benefits of parallel receive 
processing in multiprocessing environments; it also facilitates 
core affinity on network processing.  However, our analysis 
shows that Flow Director cannot guarantee in-order packet 
delivery in multiprocessing environments. TCP performs 
poorly with severe packet reordering [6]. In the following 
section, we use a simplified model to analyze why Flow 
Director cannot guarantee in-order packet delivery. 

As shown in Fig. 2, at time 

€ 

T −ε , Flow 1’s flow entry maps 
to Core 0 in the “Traffic Flow → Core” table. At this instant, 
packet S of Flow 1 arrives; based on the table, it is assigned to 
Core 0. At time 

€ 

T , due to process migration, Flow 1’s flow 
entry is updated and maps to Core 1. At 

€ 

T +ε , Packet S+1 of 
Flow 1 arrives and is assigned to the new core, namely Core 1. 
As described above, after assigning received packets to the 
corresponding receive queues, NIC copies them into system 
memory via DMA, and fires network interrupts, if necessary. 
When a core responds to a network interrupt, it processes 
received packets up through the network stack from the 
corresponding ring buffer one by one. In our case, Core 0 
processes packet S up through the network stack from Ring 
Buffer 0, and Core 1 services packet S+1 from Ring Buffer 1. 
Let 

€ 

Tservice (S)  and 

€ 

Tservice (S +1)  be the times at which the 
network stack starts to service packets S and S+1, 
respectively. If 

€ 

Tservice (S) >Tservice (S +1) , the network stack 
would receive packet S+1 earlier than packet S, resulting in 
packet reordering. Let D be the ring buffer size and let the 
network stack’s packet service rate be 

€ 

Rservice  (packets/s). 
Assume there are n packets ahead of S in Ring Buffer 0 and m 
packets ahead of S+1 in Ring Buffer 1. Then, it has 

€ 

Tservice (S) =T −ε + n /Rservice  and 

€ 

Tservice (S +1) =T +ε +m /Rservice . 

If 

€ 

ε  is small and 

€ 

n > m , the condition of 

€ 

Tservice (S) >Tservice (S +1)  would easily hold and lead to packet 
reordering. Since the ring buffer size is 

€ 

D , the worst case is 

€ 

n = D −1 and 

€ 

m = 0, it has 

€ 

Tservice (S) =T −ε + (D −1) /Rservice  
and 

€ 

Tservice (S +1) =T +ε . The ring buffer size D is a design 

parameter for the NIC and driver. For example, the Myricom 
10Gb NIC is 512, and Intel’s 1Gb NIC is 256. 

In a multicore system, a general-purpose OS scheduler tries 
to use all core resources in parallel as much as possible, 

 
Fig. 1 Flow Director Mechanism 

 
Fig. 2 Packet Reordering Analysis Model 



distributing and adjusting the load among the cores. Process 
migration across cores occurs frequently. Flow Director can 
easily cause packet reordering in these conditions. 

III. Experiments 
To validate our analysis, we ran data transmission 

experiments over an isolated network. A sender was directly 
connected to a receiver via a physical 10Gbps link.  

Sender: Dell R-805; 2 Quad Core AMD Opteron 2346HE, 
1.8GHz; Myricom 10G Ethernet NIC; Linux 2.6.28.  

Receiver: SuperMicro Server; 2 Intel Xeon CPUs, 2.66 
GHz; There are totally 4 cores in the system; Intel X520 
Server Adapter with Flow Director enabled (configured with 
suggested default parameters [5]), 10Gbps, MTU 1500; Linux 
2.6.34, Multiple TX Queue Capable. 

In our experiments, iperf is used to send n parallel TCP 
streams from sender to receiver for 100 seconds.  Iperf is a 
multi-threaded network application. With multiple parallel 
TCP data streams, a dedicated child thread is spawned and 
assigned to handle each stream. In our 1st experiments, we ran 
iperf with port 5001 in the receiver. Iperf is not pinned to a 
specific core. In our 2nd experiments, we pin iperfs with port 
5001, 6001, 7001 and 8001 to core 0, 1, 2, and 3, respectively. 
Each core is sent with n/4 TCP streams. In both experiments, 
Linux was configured to run in multicore peak performance 
mode. The receiver was instrumented to record out-of-order 
packets and we calculated packet reordering ratios. We also 
calculated the overall throughputs. The experiment results 
with a 95% confidence interval are shown in Table I and II.  

 For the 1st experiments, the degree of packet reordering is 
significant. At n =200, packet reordering  ratio  reaches  as 
high  as  0.897%.  The experiment results validated our 
analysis. In the 1st experiments, since iperf is not pinned to a 
specific core, when the scheduler tries to distribute the load 
equally among the cores, it will lead to frequent process 
migration. Flow Director can easily cause packet reordering in 
these conditions. For the 2nd experiments, no packet reordering 
was discovered. In the 2nd experiments each flow is actually 
attached  always  to  a  core,  there  will  be  no  process 
migration. As the condition of 

€ 

Tservice (S) >Tservice (S +1)  will not 
be met,  Flow  Director  will  not  cause  packet  reordering. 
Therefore, reducing or avoiding process migration is a way 
to help Flow director  to  cause  less/no packet  reordering. 
Process  migrations  in  the  1st  experiments  are  not  only 
degrading  performance,  but  also  causing  packet 
reordering.  In  the  2nd  experiments,  since  each  flow  is 
actually  attached  always  to  a  core,  there  is  strict  core 
affinity  on  network  processing  (interrupt,  flow,  and 
network  data  affinity).  Also,  because  there  is  no  packet 
reordering,  the  negative  effects  caused  by  packet 
reordering do not exist. Therefore, the throughputs  in the 
2nd  experiments  are  higher  than  those  in  the  1st 
experiments.   In the experiments, we noticed that it is the 
Intel X520 10G NIC, instead of CPUs, that limits the overall 
bandwidth. The Intel X520 10G NIC can not reach 10Gbps 
when the flow director feature is turned on. Otherwise, the 

throughputs  in the 2nd experiments would be even higher 
than those in the 1st experiments. 

IV. Conclusion & Discussion 
We use a simplified model to analyze why Flow Director 

can cause packet reordering in multiprocessing environments. 
Our experiments validate our analysis. The finding on packet 
reordering and our model can be applied to any other software 
that directs packets to the core where the application resides in 
the multiprocessing environments. The root cause that Flow 
Director can cause packet reordering is because Flow Director 
lacks mechanisms to ensure the satisfaction of the inequality 
constraint 

€ 

T
service
(S) <T

service
(S +1)  when it steers packets across 

cores. Reducing or avoiding process migration is a way to help 
Flow director to cause less/no packet reordering. However, 
this is not a true solution for the Flow Director’s packet 
reordering problem. We believe that a possible solution is to 
add extra mechanisms within the NIC to ensure the 
satisfaction of the inequality constraint 

€ 

Tservice (S) <Tservice (S +1)  
when Flow Director steers packets across cores. 
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TABLE I  
PACKET REORDERING RATIO 

n 1st Exp. 2nd Exp. 

100 0.705% ± 0.042% 0 ± 0 
200 0.897% ± 0.038% 

 

0 ± 0 
 500 0.635% ± 0.154% 

 

0 ± 0 
 1000 0.409% ± 0.009% 0 ± 0 

2000 0.129% ± 0.003% 0 ± 0 
TABLE II 

THROUGHPUTS (Gbps) 
n 1st Exp. (Gbps) 2nd Exp. (Gbps) Relative Incr. (%) 

100 6.877 ± 0.006 6.941 ± 0.004 0.9% ± 0.097% 
200 

 
6.649 ± 0.006 

 
6.791 ± 0.003 

 
2.14% ± 0.12% 

 500 
 

6.202 ± 0.003 
 

6.445 ± 0.002 
G 

3.91% ± 0.012% 
 1000 5.943 ± 0.005 6.172 ± 0.004 3.86% ± 0.154% 

2000 5.898 ± 0.008 5.909 ± 0.002 0.2% ± 0.01% 

 


